Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.310
Filtrar
1.
PLoS One ; 19(4): e0292206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564644

RESUMO

Collection and cooking of wild vegetables have provided seasonal enjoyments for Japanese local people as provisioning and cultural ecosystem services. However, the Fukushima Daiichi Nuclear Power Plant accident in March 2011 caused extensive radiocesium contamination of wild vegetables. Restrictions on commercial shipments of wild vegetables have been in place for the last 10 years. Some species, including buds of Aralia elata, are currently showing radiocesium concentrations both above and below the Japanese reference level for food (100 Bq/kg), implying that there are factors decreasing and increasing the 137Cs concentration. Here, we evaluated easy-to-measure environmental variables (dose rate at the soil surface, organic soil layer thickness, slope steepness, and presence/absence of decontamination practices) and the 137Cs concentrations of 40 A. elata buds at 38 locations in Fukushima Prefecture to provide helpful information on avoiding collecting highly contaminated buds. The 137Cs concentrations in A. elata buds ranged from 1 to 6,280 Bq/kg fresh weight and increased significantly with increases in the dose rate at the soil surface (0.10-6.50 µSv/h). Meanwhile, the 137Cs concentration in A. elata buds were not reduced by decontamination practices. These findings suggest that measuring the latest dose rate at the soil surface at the base of A. elata plants is a helpful way to avoid collecting buds with higher 137Cs concentrations and aid in the management of species in polluted regions.


Assuntos
Aralia , Acidente Nuclear de Fukushima , Isoflavonas , Monitoramento de Radiação , Poluentes Radioativos do Solo , Humanos , Verduras , Radioisótopos de Césio/análise , Ecossistema , Poluentes Radioativos do Solo/análise , Solo , Proteínas de Soja , Japão
2.
Sci Rep ; 14(1): 7630, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561437

RESUMO

When radioactive materials are released into the environment due to nuclear power plant accidents, they may enter into the body, and exposing it to internal radiation for long periods of time. Although several agents have been developed that help excrete radioactive elements from the digestive tract, only one type of radioactive element can be removed using a single agent. Therefore, we considered the simultaneous removal of caesium (Cs) and strontium (Sr) by utilising the multiple metal removal mechanisms of probiotic bacteria. In this study, the Cs and Sr removal capacities of lactobacilli and bifidobacteria were investigated. Observation using an electron probe micro analyser suggested that Cs was accumulated within the bacterial cells. Since Sr was removed non metabolically, it is likely that it was removed by a mechanism different from that of Cs. The amount of Cs and Sr that the cells could simultaneously retain decreased when compared to that for each element alone, but some strains showed only a slight reduction in removal. For example, Bifidobacterium adolescentis JCM1275 could simultaneously retain 55.7 mg-Cs/g-dry cell and 8.1 mg-Sr/g-dry cell. These results demonstrated the potentials of utilizing complex biological system in simultaneous removal of multiple metal species.


Assuntos
Césio , Estrôncio , Bactérias , Radioisótopos de Estrôncio/análise , Radioisótopos de Césio
3.
Health Phys ; 126(5): 268-271, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526244

RESUMO

ABSTRACT: The performance of a LaBr3(Ce) gamma spectrometer at high count rates was investigated up to an input count rate of 1.3 Mcps. In order to make its pulse processing faster, a preamplifier provided by the detector manufacturer was eliminated, and the signal from the photomultiplier tube was fed directly to a digital pulse processing system. To accomplish both fast pulse processing and good energy resolution, the pulse-shaping parameters were optimized at a low count rate of 1.5 kcps, and then measurements were carried out at various count rates. Input count rates ranging from 1.5 kcps to 21 kcps were produced using a set of 137Cs resin sources, while higher rates between 45 kcps and 1.3 Mcps were produced using a 1.2-GBq 137Cs source. The spectrometer showed an excellent performance for the input rate up to 150 kcps, while the dead time increased rapidly for the input rates above 150 kcps. The system dead time has been improved greatly by eliminating the preamplifier.


Assuntos
Radioisótopos de Césio , Espectrometria gama , Ciclopropanos
4.
Health Phys ; 126(5): 272-279, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526245

RESUMO

ABSTRACT: Previous studies have shown that measuring changes in electrical impedance that follow radiation-induced suppression of metabolic activity in irradiated yeast cells can be used to determine radiation dose. The current work investigates the radiation response of Saccharomyces cerevisiae cells by using metabolic activity of cells as a damage indicator. Impedance biodosimetry was examined as a method to evaluate the radiation response of yeast cells. Active lab-grade dry yeast cells were used as the biological material as these samples are simple to handle and have a long shelf-life. A novel dosimeter design has been developed with a strict fabrication method and measurement procedure to ensure reproducible measurements are possible. Prepared yeast samples were irradiated to doses from 0.5 to 8 Gy using a 137Cs source, and a dose response curve was developed that showed a linear relationship of dose with changes in impedance measurements. Fading of the impedance signal was also investigated, and it was shown that there was no noticeable fading of the impedance signal over a period of 7 mo. Finally, the lowest detectable limit measured using this methodology was determined to be 300 mGy. This work presents an alternative retrospective dosimetry technique that can be used at a high scale and low cost following large-scale radiological accidents.


Assuntos
Radioisótopos de Césio , Saccharomyces cerevisiae , Impedância Elétrica , Estudos Retrospectivos
6.
J Radiol Prot ; 44(2)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530296

RESUMO

Calibration of 22 gamma camera units was performed at 15 hospitals in southern and western Sweden to estimate137Cs contamination in humans in a supine static geometry, with a new developed calibration protocol and phantom. The minimum detectable activities (MDAs) and the estimated committed effective doses (CEDs) were calculated for each calibration. Generic calibration factors were calculated for five predetermined groups based on the detector type and manufacturer. Group 1 and 2 included NaI-based gamma cameras from General Electrics (GEs) with a crystal thickness of 5/8'' and 3/8'' respectively. Group 3 and 4 included NaI-based gamma cameras from Siemens Healthineers with a crystal thickness of 3/8'', with a similar energy window as the GE NaI-based cameras and a dual window respectively. Group 5 included semiconductor-based gamma cameras from GE with a CdZnTe (CZT) detector. The generic calibration factors were 60.0 cps kBq-1, 52.3 cps kBq-1, 50.3 cps kBq-1, 53.2 cps kBq-1and 48.4 cps kBq-1for group 1, 2, 3, 4, and 5 respectively. The MDAs ranged between 169 and 1130 Bq for all groups, with measurement times of 1-10 min, corresponding to a CED of 4.77-77.6µSv. A dead time analysis was performed for group 1 and suggested a dead time of 3.17µs for137Cs measurements. The dead time analysis showed that a maximum count rate of 232 kcps could be measured in the calibration geometry, corresponding to a CED of 108-263 mSv. It has been shown that semiconductor-based gamma cameras with CZT detectors are feasible for estimating137Cs contamination. The generic calibration factors derived in this study can be used for gamma cameras of the same models in other hospitals, for measurements in the same measurement geometry. This will increase the measurement capability for estimating internal137Cs contamination in the recovery phase following radiological or nuclear events.


Assuntos
Cádmio , Radioisótopos de Césio , Câmaras gama , Telúrio , Zinco , Humanos , Calibragem
7.
Chemosphere ; 353: 141570, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447900

RESUMO

Selective adsorption is the most suitable technique for eliminating trace amounts of 137Cs from various volumes of 137Cs-contaminated water, including seawater. Although various metal ferrocyanide (MFC)-functionalized magnetic adsorbents have been developed for the selective removal of 137Cs and magnetic recovery of adsorbents, their adsorption capacity for Cs remains low. Here, magnetic hierarchical titanium ferrocyanide (mh-TiFC) was synthesized for the first time for enhanced Cs adsorption. Hierarchical TiFC, comprising 2-dimensional TiFC flakes, was synthesized on SiO2-coated magnetic Fe3O4 particles using a sacrificial TiO2 shell as a source of Ti4+ via a reaction with ferrocyanide under acidic conditions. The resultant mh-TiFC exhibited the highest maximum adsorption capacity (434.8 mg g-1) and enhanced Cs selectivity with an excellent Kd value (6,850,000 mL g-1) compared to those of previously reported magnetic Cs adsorbents. This enhancement was attributed to the hierarchical structure, which reduced intracrystalline diffusion and increased the surface area available for direct Cs adsorption. Additionally, mh-TiFC (0.1 g L-1) demonstrated an excellent removal efficiency of 137Cs exceeding 99.85% for groundwater and seawater containing approximately 22 ppt 137Cs. Therefore, mh-TiFC offers promising applications for the treatment of 137Cs-contaminated water.


Assuntos
Radioisótopos de Césio , Césio , Poluentes Químicos da Água , Césio/química , Água/química , Titânio , Ferrocianetos/química , Dióxido de Silício/química , Adsorção , Fenômenos Magnéticos , Poluentes Químicos da Água/análise
8.
J Environ Radioact ; 274: 107413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484579

RESUMO

This study explores the impact of a simulated radiological dispersal device (RDD) event in an urban area on young adults around 20 years old. The RDD releases radioactive Cs-137 (7.0E+3 Ci), a common industrial sterilization source. The study aims to demonstrate that combining computational codes and epidemiological models can produce valuable data to guide initial actions when confronting a hostile radioactive environment. The HotSpot Health Physics and RESRAD-RDD codes were used in the simulation to evaluate the event's initial phase. The codes were executed together, and the HotSpot output data was input into RESRAD-RDD. Based on simulated radiation dose levels, estimated doses were incorporated into radioepidemiological models proposed by the Committee on Biological Effects of Ionizing Radiation (BEIR V or VII report). Despite limitations, data transfer between the models revealed no discontinuities or antagonisms. Radiation doses were simulated under three exposure conditions and two atmospheric release modes (day or night), suggesting that atmospheric conditions, sex, and exposure routine can strongly influence the perception of radiation impacts. This combination of methods can increase situational awareness and help with decision-making and developing coping strategies.


Assuntos
Monitoramento de Radiação , Liberação Nociva de Radioativos , Adulto Jovem , Humanos , Adulto , Radioisótopos de Césio , Monitoramento de Radiação/métodos , Conscientização , Doses de Radiação
9.
J Environ Radioact ; 275: 107426, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522413

RESUMO

Echinacea purpurea marc (EPM), a residual of echinacea herb after the extraction process, was used as a natural low-cost sorbent for competitive sorption of 152+154Eu(III), 60Co(II) and 134Cs(I) radionuclides. The EPM was ground to prepare it for use in the sorption process. The variables influencing the sorption process were assessed, including pH, contact time, concentrations of metal ions, and temperature. EPM was characterized by different analytical instruments such as FTIR, SEM, XRD, and DTA/TGA. pH 4.0 was selected as the ideal pH value for competitive sorption of the studied ions. Adsorption kinetics data found that the sorption followed a pseudo-second-order model. The adsorption isotherm data was significantly better suited by the Langmuir isotherms in the case of Eu(III) ions while following Freundlich in the case of Co(II) and Cs(I) ions. Positive ΔHo values confirm the endothermic character of metal ion sorption onto EPM. The loading efficiencies of Eu(III), Co(II), and Cs(I) ions in the EPM column were 66.67%, 9.59%, and 4.81%, respectively. The EPM is a cost-effective and efficient separation of Eu(III) ions more than Cs(I) and Co(II) ions. Therefore, in the future, it will be a starting point for the separation of trivalent elements of lanthanide ions.


Assuntos
Radioisótopos de Césio , Radioisótopos de Cobalto , Adsorção , Radioisótopos de Césio/química , Radioisótopos de Césio/análise , Radioisótopos de Cobalto/química , Európio/química , Cinética , Poluentes Radioativos do Solo/análise
10.
J Environ Radioact ; 275: 107428, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547560

RESUMO

In order to investigate the impact of environmental conditions on the distribution and migration of 90Sr in the Longji terrace environment, the activity concentrations of 90Sr and 137Cs were determined. The activity concentration ranges of 90Sr and 137Cs in surface soil were 0.15-1.04 Bq/kg and 2.16-6.94 Bq/kg, respectively. These results showed that there was a similar trend between the activity concentration of 90Sr and 137Cs in the surface soil along the runoff path and their activity concentration were influenced by the slope of the terraced terrain. On the other hand, the activity ranges of 90Sr and 137Cs in soil cores were 0.01-2.74 Bq/kg and 0.43-7.19 Bq/kg, respectively. These results indicate that the migration mechanism of 90Sr is different from that of 137Cs. As compared with 137Cs, 90Sr is significantly influenced by the moisture content. In addition, high span of 137Cs/90Sr activity ratios were found in this study, which were attributed to the characteristics of cultivated land and frequent artificial disturbances that intensified the migration of 90Sr.


Assuntos
Radioisótopos de Césio , Monitoramento de Radiação , Poluentes Radioativos do Solo , Radioisótopos de Estrôncio , Radioisótopos de Césio/análise , Radioisótopos de Estrôncio/análise , Poluentes Radioativos do Solo/análise
11.
J Environ Radioact ; 275: 107425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554648

RESUMO

As the need for global decommissioning and site remediation of aging and shut-down nuclear power plants continues to grow, it becomes increasingly crucial to efficiently treat contaminated soil while minimizing waste generation. This study explores an innovative soil decontamination approach that utilizes supercritical carbon dioxide (SCCO2) as the primary solvent, along with ethanol as a co-solvent and specific additives, including a chelate ligand (catechol ligand) and a co-ligand (NEt4PFOSA). The advantages of SCCO2, such as its penetration and solubility, coupled with its ability to separate from radioactive waste, are harnessed in this research. The study demonstrates that the combination of SCCO2, ethanol, and additives significantly enhances decontamination efficiency, particularly for cesium (Cs), strontium (Sr), and uranium (U) contamination. Results indicate that decontamination efficiency varies with soil particle size, with smaller particles presenting greater challenges. This study presents a promising eco-friendly soil decontamination technology using SCCO2 containing ethanol and specific additives to efficiently reduce radioactive contamination in soil.


Assuntos
Dióxido de Carbono , Descontaminação , Etanol , Poluentes Radioativos do Solo , Descontaminação/métodos , Poluentes Radioativos do Solo/análise , Etanol/química , Dióxido de Carbono/química , Recuperação e Remediação Ambiental/métodos , Radioisótopos de Césio/química , Solo/química
12.
Appl Environ Microbiol ; 90(4): e0211323, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470121

RESUMO

A major incident occurred at the Fukushima Daiichi Nuclear Power Station following the tsunami triggered by the Tohoku-Pacific Ocean Earthquake in March 2011, whereby seawater entered the torus room in the basement of the reactor building. Here, we identify and analyze the bacterial communities in the torus room water and several environmental samples. Samples of the torus room water (1 × 109 Bq137Cs/L) were collected by the Tokyo Electric Power Company Holdings from two sampling points between 30 cm and 1 m from the bottom of the room (TW1) and the bottom layer (TW2). A structural analysis of the bacterial communities based on 16S rRNA amplicon sequencing revealed that the predominant bacterial genera in TW1 and TW2 were similar. TW1 primarily contained the genus Limnobacter, a thiosulfate-oxidizing bacterium. γ-Irradiation tests on Limnobacter thiooxidans, the most closely related phylogenetically found in TW1, indicated that its radiation resistance was similar to ordinary bacteria. TW2 predominantly contained the genus Brevirhabdus, a manganese-oxidizing bacterium. Although bacterial diversity in the torus room water was lower than seawater near Fukushima, ~70% of identified genera were associated with metal corrosion. Latent environment allocation-an analytical technique that estimates habitat distributions and co-detection analyses-revealed that the microbial communities in the torus room water originated from a distinct blend of natural marine microbial and artificial bacterial communities typical of biofilms, sludge, and wastewater. Understanding the specific bacteria linked to metal corrosion in damaged plants is important for advancing decommissioning efforts. IMPORTANCE: In the context of nuclear power station decommissioning, the proliferation of microorganisms within the reactor and piping systems constitutes a formidable challenge. Therefore, the identification of microbial communities in such environments is of paramount importance. In the aftermath of the Fukushima Daiichi Nuclear Power Station accident, microbial community analysis was conducted on environmental samples collected mainly outside the site. However, analyses using samples from on-site areas, including adjacent soil and seawater, were not performed. This study represents the first comprehensive analysis of microbial communities, utilizing meta 16S amplicon sequencing, with a focus on environmental samples collected from the radioactive element-containing water in the torus room, including the surrounding environments. Some of the identified microbial genera are shared with those previously identified in spent nuclear fuel pools in countries such as France and Brazil. Moreover, our discussion in this paper elucidates the correlation of many of these bacteria with metal corrosion.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Água/análise , Radioisótopos de Césio/análise , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Poluentes Radioativos da Água/análise , Japão
13.
Environ Pollut ; 346: 123681, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428789

RESUMO

This work reports comprehensive time-series datasets over the past 50 years for natural (210Po) and anthropogenic (134Cs and 137Cs) radionuclides in three fish species (cod, herring and plaice) from Danish marine areas covering the North Sea, Kattegat, and Baltic Sea. Impact from the global fallout of atmospheric nuclear weapons testing, radioactive discharges from the European nuclear reprocessing plants and release from Chernobyl accident are clearly detected in the fish samples. While 210Po concentrations in each fish species demonstrated comparable levels across the three regions without notable temporal trends, significantly higher median 210Po concentration was observed in the lower trophic level fish, namely herring and plaice, compared to cod. In contrast, 137Cs concentrations in all three species steadily decrease over time after the Chernobyl-attributed peaks in late 1980s in the entire study area, whereas 137Cs always demonstrated higher concentrations in cod than herring and plaice. Our calculated concentration factors (CFs) for 137Cs in this work indicate that the mean CFs for 137Cs over the past 50 years are significantly different across the three species, following the order of cod < herring < plaice. Based on the time-series data, ecological half-lives (Teco) of 137Cs in fish from Danish marine areas were estimated to evaluate the long-term impact of anthropogenic radioactive contamination in different regions. Our results indicate no significant difference in Teco across different fish species, whereas the weighted mean Teco for fish in the Baltic Sea (29.3 ± 3.9 y) is significantly longer than those of the North Sea (9.8 ± 0.9 y) and Kattegat (11.7 ± 1.2 y), reflecting the strong 'memory effect' of the Baltic Sea due to its slow water renewal. However, the dose assessment demonstrates that the contribution of the natural radionuclide 210Po to ingestion dose from fish consumption is 1-2 order of magnitude higher compared to that of 137Cs.


Assuntos
Radioatividade , Poluentes Radioativos da Água , Animais , Poluentes Radioativos da Água/análise , Mar do Norte , Radioisótopos de Césio/análise , Peixes , Dinamarca
14.
Radiat Prot Dosimetry ; 200(6): 554-563, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38453149

RESUMO

Monitoring radioactivity levels in the environment around nuclear power plants is of great significance to assessing environmental safety and impact. Shidaowan nuclear power plant is currently undergoing commissioning; however, the baseline soil radioactivity is unknown. The naturally occurring radionuclides 238U, 232Th, 226Ra and 40K, and artificial radionuclide (AR) 137Cs in soil samples around the Shidaowan nuclear power plant were measured to establish the baseline levels. Human health hazard indices such as external hazard indices (Hex), Radium equivalent (Raeq), outdoor absorbed dose rate (Dout), annual effective dose (AED) and excess lifetime cancer risk (ELCR) were estimated. The average concentration of 232Th, 40K, 137Cs, 238U and 226Ra were 42.6 ± 15, 581 ± 131, 0.68 ± 0.38, 40.13 ± 9.07 and 40.8 ± 12.8 Bq per kg, respectively. The average Hex, Raeq, Dout, AED and ELCR were 0.40, 146 Bq per kg, 68.8 nGy per h, 0.09 mSv per y and 3.29E-04, respectively. These data showed an acceptable level of risk to residents near the nuclear power plant and that the current radioactivity in the soil may not pose immediate harm to residents living close to the nuclear power plant. The observed lower AED and 40 K and 137Cs concentrations were comparable to other studies, whilst ELCR was higher than the world average of 2.9E-04. The commissioning of the Shidaowan nuclear power plant is potentially safe for the surrounding residents; further continuous monitoring is recommended.


Assuntos
Radioisótopos de Césio , Centrais Nucleares , Radioisótopos de Potássio , Monitoramento de Radiação , Rádio (Elemento) , Poluentes Radioativos do Solo , Tório , Poluentes Radioativos do Solo/análise , Medição de Risco/métodos , China , Monitoramento de Radiação/métodos , Humanos , Radioisótopos de Césio/análise , Rádio (Elemento)/análise , Tório/análise , Radioisótopos de Potássio/análise , Doses de Radiação , Urânio/análise
15.
Radiat Prot Dosimetry ; 200(5): 496-503, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38364798

RESUMO

In situ gamma-spectrometric measurements were performed at grasslands (45 plots) and forests (6 plots) in the vicinity of the Belarusian nuclear power plant in September-October 2019. The aim of the study was to evaluate the baseline level of ambient dose equivalent rates of gamma radiation from natural radionuclides and 137Cs in the period preceding the commissioning of the NPP. The study revealed more than a 2-fold variability in values of the total ambient dose equivalent rate: from 29 to 72 nSv/h. This spread can be explained by variability in the content of natural radionuclides in the environment and, accordingly, ambient dose equivalent rate. At forest sites, compared to grassland sites, the values of ambient dose equivalent rates of gamma radiation from natural radionuclides were statistically significantly lower. The contribution of gamma radiation from 137Cs to the total ambient dose equivalent rate was insignificant and averaged 3% for grasslands and 6% for forests.


Assuntos
Radioisótopos de Césio , Monitoramento de Radiação , Radioisótopos de Césio/análise , Pradaria , Monitoramento de Radiação/métodos , Raios gama , Florestas
16.
Mar Pollut Bull ; 201: 116168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412795

RESUMO

To assess ocean-scale transport systems, we examined the latitudinal cross-sectional distribution of 137Cs activity concentrations in the Indian and Southern Oceans between December 2019 and January 2020 using low-background γ-spectrometry. At 0°-20°S, 137Cs concentrations exhibited a gradual decrease below the mixing layer (1-0.1 mBq/L). However, the concentrations steeply decreased toward the Southern Ocean along a transect of 30°-60°S (from 0.8 to 0.02 mBq/L) with minor vertical variation at each site. For the 137Cs inventories (0-800 m depth) from 15 to 600 Bq/m2, a maximum value was recorded at 30°S, indicating the downwelling of 137Cs as a reservoir for the Subantarctic Mode Water. The significantly low concentrations (0.02 mBq/L) at 60°S suggest minimal transport of 137Cs to the Southern Ocean. These findings assist in understanding 137Cs circulation patterns and provide valuable insights into the transport pathways of soluble contaminants.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Água do Mar/química , Estudos Transversais , Poluentes Radioativos da Água/análise , Oceanos e Mares , Radioisótopos de Césio/análise
17.
Chemosphere ; 352: 141369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342150

RESUMO

The release of radionuclides, including Cesium-137 (137Cs), Strontium-90 (90Sr), Uranium-238 (238U), Plutonium-239 (239Pu), Iodine-131 (131I), etc., from nuclear contamination presents profound threats to both the environment and human health. Traditional remediation methods, reliant on physical and chemical interventions, often prove economically burdensome and logistically unfeasible for large-scale restoration efforts. In response to these challenges, bioremediation has emerged as a remarkably efficient, environmentally sustainable, and cost-effective solution. This innovative approach harnesses the power of microorganisms, plants, and biological agents to transmute radioactive materials into less hazardous forms. For instance, consider the remarkable capability demonstrated by Fontinalis antipyretica, a water moss, which can accumulate uranium at levels as high as 4979 mg/kg, significantly exceeding concentrations found in the surrounding water. This review takes an extensive dive into the world of bioremediation for nuclear contaminant removal, exploring sources of radionuclides, the ingenious resistance mechanisms employed by plants against these harmful elements, and the fascinating dynamics of biological adsorption efficiency. It also addresses limitations and challenges, emphasizing the need for further research and implementation to expedite restoration and mitigate nuclear pollution's adverse effects.


Assuntos
Radioisótopos de Césio , Plantas , Humanos , Biodegradação Ambiental , Radioisótopos de Césio/análise , Plantas/química , Radioisótopos do Iodo , Água
18.
J Environ Radioact ; 273: 107395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325250

RESUMO

We evaluate the impact of the radiological contamination of the Grote Nete catchment in Belgium to people and non-human biota. This region has received effluents from the phosphate and nuclear industries via tributaries of the Grote Nete river in past decades, resulting in the presence of radionuclides such as 241Am, 60Co, 137Cs, 40K, 210Pb, 238Pu, 239,240Pu, 226Ra, 228Ra, 228Th, 232Th, 234U, 235U and 238U. During the period 2016-2021, we measured these radionuclides in the water column, the bed sediment and riverbanks. Additionally, we carried out radon measurements on the riverbanks in 2022. Based on these measurements, the dose rates to people were calculated for different potential exposure scenarios, using the SCK CEN biosphere tool. We also performed an assessment of exposure of ionising radiation to non-human biota (including 222Rn and its daughters) using the ERICA Tool. We observed three types of areas at the Grote Nete riverbank: (a) a lower category exposure with 226Ra concentrations reflecting purely Belgian background values; (b) a middle category with enhanced 226Ra, mainly adsorbed on clay minerals and (c) an upper category extending to maximum values in the order of 103 Bq kg-1. The main component of the dose rate for terrestrial and aquatic organisms is 226Ra followed by 210Pb (terrestrial) or 228Ra, (aquatic). The anthropogenic vector of the contamination (40K, 60Co, 90Sr, 137Cs, 228Th, 232Th, 234,235,238U, 238,239Pu, 241Am) makes a negligible contribution to dose. Overall, the Grote Nete wildlife is not under significant risk from exposure to soil or water-borne radionuclides and radon emanating from the soil, even if the ERICA benchmark of 10 µGy h-1 is occasionally exceeded for 226Ra, 210Pb or 228Ra, because exposures are below the levels at which effects are known to occur. For people, radon inhalation is the main exposure pathway and exposures can reach 1 mSv y-1 for hypothetical residents living at the riverbanks and remaining most of their time in the area, but it can be expected that exposures are much lower at increasing distances from the river. It is concluded that neither people nor the environment are at any significant radiological risk from this situation.


Assuntos
Monitoramento de Radiação , Radônio , Humanos , Bélgica , Chumbo , Monitoramento de Radiação/métodos , Radioisótopos de Césio , Doses de Radiação , Solo , Água
19.
Water Res ; 252: 121228, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309060

RESUMO

Persistent concerns regarding environmental hazards arise from the difficulty in disposing of radioactive plant-based wastes originating from the nuclear accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) in Japan in 2011. In this study, three anaerobic digestion (AD) strategies were proposed: Sole anaerobic wet fermentation, and wet fermentations with either alkaline-heat or ultrasonic pre-treatment, which were employed for long-term anaerobic treatment of a genuine radioactive grass stemming from the FNPP accident. The objectives of this work are to investigate the effects of pre-treatments on biomass conversion efficiency and to gain insight into the leaching behavior of radiocaesium (Rad-Cs) within AD processes. Experimental results indicate that by introducing alkaline-heat and ultrasonic pre-treatments to AD systems, the removal efficiencies of total solids (TS) from the raw grass increased by 60.8 % and 42.5 %, respectively, compared to sole wet fermentation. Pre-treatments have been shown to enhance the stability of AD systems, both in terms of enhancing methane production and mitigating pH fluctuations triggered by the accumulation of organic acids. Remarkably, even though the Rad-Cs leaching rate was highest when the AD system was fed with the alkaline-heat pre-treated grass, it remained unsatisfactory at only 5.77 %. We inadvertently isolated a soil-like component from the raw grass, and analyzed both its proportion in the raw grass and the radioactivity intensity. The results indicate that although the soil constituted only 9.51 % TS of the raw grass, it accounted for a significant 81.35 % of the total radioactivity. The soil, which has a pronounced affinity for ionic Cs, being mixed into the raw grass, was identified as the primary factor limiting the leaching efficiency of Rad-Cs throughout both the pre-treatment and wet fermentation phases.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Radioatividade , Poaceae , Fermentação , Anaerobiose , Biomassa , Radioisótopos de Césio/análise , Japão , Solo
20.
Chemosphere ; 352: 141462, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364923

RESUMO

The migration and retention of radioactive contaminants such as 137Cesium (137Cs) in various environmental media pose significant long-term storage challenges for nuclear waste. The distribution coefficient (Kd) is a critical parameter for assessing the mobility of radioactive contaminants and is influenced by various environmental conditions. This study presents machine-learning models based on the Japan Atomic Energy Agency Sorption Database (JAEA-SDB) to predict the Kd values for Cs in solid phase groups. We used three different machine learning models: random forest (RF), artificial neural network (ANN), and convolutional neural network (CNN). The models were trained on 14 input variables from the JAEA-SDB, including factors such as the Cs concentration, solid-phase properties, and solution conditions, which were preprocessed by normalization and log-transformation. The performances of the models were evaluated using the coefficient of determination (R2) and root mean squared error (RMSE). The RF, ANN, and CNN models achieved R2 values greater than 0.97, 0.86, and 0.88, respectively. We also analyzed the variable importance of RF using an out-of-bag (OOB) and a CNN with an attention module. Our results showed that the environmental media, initial radionuclide concentration, solid phase properties, and solution conditions were significant variables for Kd prediction. Our models accurately predict Kd values for different environmental conditions and can assess the environmental risk by analyzing the behavior of radionuclides in solid phase groups. The results of this study can improve safety analyses and long-term risk assessments related to waste disposal and prevent potential hazards and sources of contamination in the surrounding environment.


Assuntos
Césio , Resíduos Radioativos , Césio/análise , Radioisótopos de Césio/análise , Resíduos Radioativos/análise , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...